skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mohan, Jayashree"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 30, 2026
  2. Aguilera, Marcos; Yadgar, Gala (Ed.)
    Training Deep Neural Networks (DNNs) is a resource-hungry and time-consuming task. During training, the model performs computation at the GPU to learn weights, repeatedly, over several epochs. The learned weights reside in GPU memory, and are occasionally checkpointed (written to persistent storage) for fault-tolerance. Traditionally, model parameters are checkpointed at epoch boundaries; for modern deep networks, an epoch runs for several hours. An interruption to the training job due to preemption, node failure, or process failure, therefore results in the loss of several hours worth of GPU work on recovery. We present CheckFreq, an automatic, fine-grained checkpointing framework that (1) algorithmically determines the checkpointing frequency at the granularity of iterations using systematic online profiling, (2) dynamically tunes checkpointing frequency at runtime to bound the checkpointing overhead using adaptive rate tuning, (3) maintains the training data invariant of using each item in the dataset exactly once per epoch by checkpointing data loader state using a light-weight resumable iterator, and (4) carefully pipelines checkpointing with computation to reduce the checkpoint cost by introducing two-phase checkpointing. Our experiments on a variety of models, storage backends, and GPU generations show that CheckFreq can reduce the recovery time from hours to seconds while bounding the runtime overhead within 3.5%. 
    more » « less
  3. null (Ed.)
    Training Deep Neural Networks (DNNs) is resource-intensive and time-consuming. While prior research has explored many different ways of reducing DNN training time, the impact of input data pipeline , i.e., fetching raw data items from storage and performing data pre-processing in memory, has been relatively unexplored. This paper makes the following contributions: (1) We present the first comprehensive analysis of how the input data pipeline affects the training time of widely-used computer vision and audio Deep Neural Networks (DNNs), that typically involve complex data pre-processing. We analyze nine different models across three tasks and four datasets while varying factors such as the amount of memory, number of CPU threads, storage device, GPU generation etc on servers that are a part of a large production cluster at Microsoft. We find that in many cases, DNN training time is dominated by data stall time : time spent waiting for data to be fetched and pre-processed. (2) We build a tool, DS-Analyzer to precisely measure data stalls using a differential technique, and perform predictive what-if analysis on data stalls. (3) Finally, based on the insights from our analysis, we design and implement three simple but effective techniques in a data-loading library, CoorDL, to mitigate data stalls. Our experiments on a range of DNN tasks, models, datasets, and hardware configs show that when PyTorch uses CoorDL instead of the state-of-the-art DALI data loading library, DNN training time is reduced significantly (by as much as 5X on a single server). 
    more » « less